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J .  Phys. A: Math. Gen. 16 11983) 1377-1382. Printed in Great Britain 

Boson realisation of the Lie algebra F4 and non-trivial 
zeros of 61 symbols 

J Van der Jeugtt, G Vanden Berghe and H De Meyer$ 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 2 8 1 4 9 ,  
B9000 Gent, Belgium 

ReceiLed 1 July 1982, in final form 12 November 1982 

Abstract. By decomposing the adjoint and lowest dimensional representations of the 
exceptional Lie algebra F4 in the reduction F,-. SO3, a boson realisation of a F4 generator 
basis is established on account of a standard tensor operator formalism. Such a basis 
clearly exhibits the non-trivial vanishing of two 6 j  coefficients (discarding Regge sym- 
metries), a property which is closely related to the possible embedding of F4 into SO26. 
Prospects for the occurrence of more non-trivial zeros, related to exceptional groups of 
higher rank, are indicated. 

1. Introduction 

The existence of a class of zeros of the Racah 6 j  coefficients, which may be called 
non-trivial or structural zeros since they do not result from violation of the triangle 
conditions, has been discussed recently by Biedenharn and Louck (1981b). In their 
book, an extensive table is included listing over 1400 such zeros of the 6 j  symbol. 
More striking, however, is the fact that until now, if one disregards Regge symmetries, 
a significant explanation has been presented for only two of these accidental zeros. 
The first example is that of the coefficient 

the vanishing of which is rather easily explained within the quasi-spin model. The 
second and better known example is that of the 6 j  symbol 

of which the zero value elucidates the embedding of the exceptional Lie algebra Gz 
in the algebra SO7. This fact can be readily verified if one realises the generators of 
SO, as tensor operators with respect to the SO3 subgroup in the chain SO7 2 Gz 2 SO3. 
Biedenharn and Louck (1981b) remark that it would be of considerable interest to 
discuss the remaining exceptional groups by similar explicit results. It is precisely the 
aim of the present paper to make a first decisive step in this direction. 
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The next smallest exceptional group after G2 is F4, and some partial results have 
been obtained already for this group. More precisely a (boson) realisation of the F4 

generators has been constructed by Wadzinski (1969) by expressing them in terms of 
SO3 tensor operators. This construction, however, is not the simplest one since it 
was, moreover, required by Wadzinski that the generator basis should make apparent 
the SO9 subgroup structure contained in F4. Such a condition implied the introduction 
of four types of bosons, each carrying a different angular momentum, whereas the 
tensor operator components needed to express the F4 generators form a subset of a 
U26 infinitesimal operator basis. Hence, we can summarise that Wadzinski's treatment 
of F4 is related to the U26 3 F4 =I SO9 3 SO3 chain of groups. Disappointing, however, 
is the fact that within this basis of the F4 algebra, it is impossible to explain any 
non-trivial zero of the 6j symbol. In turn, as was shown by Wadzinski (1969), many 
relations between 6j coefficients follow from it. Caused partially by the fact that the 
number of bosons is too large, relations are found instead of structural zeros; we 
believe it is possible to explain some of the latter in realising the F4 algebra by means 
of two bosons only. This can be accomplished by considering the reduction of F4 
straight into SO3, a point of view which will turn out to be related to the chain 
SOX 3 F4 3 SO3, that is, to the embedding of F4 in SOz6. Indeed, explicit calculations 
will show that two new non-trivial zeros of the 6j coefficients can be explained, whereas 
the use of Regge symmetries enlarges this number up to eight contained in the table 
of Biedenharn and Louck (1981b). 

Let us mention finally that in labelling irreducible representations we shall follow 
the same conventions as in the book by McKay and Patera (1981), with the exception 
of SO3 representations, which we shall label by half the number that they use. 

2. Tensor operators 

SO3 tensor operators are defined by means of reduced matrix elements (Judd 1963, 
Wadzinski 1969): 

where 1 and k are SO3 representation labels, [ k ] = 2 k + 1  is the dimension of the 
tensor representation and T is an additional label to distinguish states with the same 
I. These operators obey the following commutation relations: 

Note that in principle, 1 can take integer or half-integer values. Realisations in terms 
of tensor operators with integer I will be called boson realisations hereafter. Such a 
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realisation is established for any compact semi-simple Lie algebra H by writing the 
generators of H as 

whereby ( y k )  are the SO3 representations in which the adjoint representation of H 
decomposes, y being used to distinguish between similar representations. A method 
to calculate the coefficients g[. . .] in (2.3) has been discussed by Wadzinski (1969). 
As an application this author constructed a realisation of the F4 generators which 
has the peculiarity that it makes the SO9 subalgebra contained in F4 apparent. Since 
we want to further compare his approach with ours, we give Wadzinski’s results here 
(with corrections). The 52-dimensional adjoint representation (1 0 0 0) of F4 decom- 
poses into SO9 representations (0 1 0 0) and (0 0 0 1). In turn these reduce into 
the SO3 representations (7), ( 5 ) ,  (3), (1) and ( 5 ) ,  (2) respectively. The non-trivial 
lowest dimensional F4 representation (0 0 0 1) decomposes into the SO9 representa- 
tions (0 0 0 l ) ,  (1 0 0 0) ,  (0 0 0 0) which respectively decompose into the SO3 
representations ( 5 ) ,  (2) and (4), (0). As a consequence four bosons are introduced 
which in spectroscopic notation are written as h, d, g and s. The F4 generator realisation 
is given by 

GI, = 3-’/’vi(gg) +f2-1’2~i(dd)  + f ( 1 1 / 2 ) 1 ’ 2 ~ ~  (hh) 
1 / 2  3 1 / 2  3 

G3q = 3 - l ” ~  i (gg) + :( 11/3) 

G, 5 q  = 3- 

G7q = 3-’”~;(gg) -:(17) 

v (dd) - h 1 3  U (hh) + (- 1)’ ( 5 /  1 2 ) ( ~ ;  (dh) - U (hd)) 
1/2 5 

U (gg) + :U (hh) - (- 1)’ f ( 5  / 2) ‘/’(U (dh) - v (hd)) 

(2.4) 
1/2 7 Vq(hh) - ( -1 ) ’~ (7 /2 )”2 (~~(dh)  - V;(hd)) 

G zq -I - 22 -1 /2  [vt(sd) + ( - l ) ’ ~ t ( d ~ ) ]  + (-1)‘:(7/3)1’2[~: (gd) + ( - l ) ’~t(dg)]  

- ( - 1 ) E + ’ l  4(11/3)”’[~: (gh) - (-l)’~?( (hg)] 

G b s q  =$2-1’2[~:(~h) + (-1)’~:(h~)]+ (-1)“’a(5/3)1’2[~~(gd) -(-1)’~i(dg)] 

+ ( -1)‘~(1”3)’’2[~~(gh)+(-1)’~~(hg)] .  

Hereby p, S and E can be attributed arbitrary but fixed integer values. Also, the first 
four lines of (2.4) constitute a realisation of the SO9 subalgebra. Furthermore, the 
set of operators t ’ t ( s f ) ,  where s and t stand for g, h, d or s and with k and q running 
through all acceptable values, constitutes a basis of the U26 Lie algebra. Hence, the 
realisation (2.4) makes the embedding of F4 into U26 explicit. 

3. Two-boson realisation of F4 

F4 possesses a maximal SO3 subalgebra (Dynkin 1957a, b). The corresponding branch- 
ing rules for F4 representations are found in the tables of McKay and Patera (1981). 
So we immediately learn that (lOOO), the adjoint representation of F4, decomposes 
into the representations ( l l ) ,  (7), ( 5 )  and (1) of that maximal SO3 subalgebra, whereas 
(OOOl), the 26-dimensional representation of F4, reduces into (8) and (4). Hence, 
instead of the four bosons in the preceding section, we need only two for which we 
reserve in the spectroscopic notation the characters 1 and g respectively. Proceeding 
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as in 8 2 we succeeded in casting the F4 algebra into the following form: 

Here too, the integer a may be freely chosen. Furthermore, we notice that in (3.1) 
a tensor operator with boson content of mixed type is always part of a sum of which 
the other summand is a tensor operator differing from the former by an interchange 
of the two bosons. Also, in (3.1) only tensor operators of odd rank occur. These two 
properties make the embedding of F4, as given by (3.1), into SO26 explicit (Elliott 
1958, Judd 1963). 

As a supplementary verification of the validity of (3.1) we have transformed (3.1) 
into the Cartan-Weyl standard form after which we verified that the obtained root 
structure is in agreement with the well known result given in many textbooks. 

4. Non-trivial zeros 

An interesting property of the realisation (3.1) is that in the progression of generators 
some odd-rank tensors are missing which can exist on grounds of angular momentum 
coupling and which occur in SO26. We shall later demonstrate that this peculiarity, 
which reflects the possible embedding of F4 into and which is very similar to 
what appears in the G2 c SO7 case, is one of the origins for the occurrence of non-trivial 
zeros of 6 j  coefficients. But let us first point out that the missing of even-rank tensors 
in (3.1) is not at all related to structural zeros and does not even give rise to relations 
between 6 j  symbols. Indeed, within the algebra (3.1) it is trivially excluded that 
even-rank tensors could be generated by the commutation of generators. As an 
example take the operator v,k(gg) with k even and 0 s k s 8. As may be verified from 
equation (2.21, such an operator could only be obtained by working out the commu- 

7 or 11 and q1 + q 2  = q. But, k l +  k2 + k being even, it is obvious from (2.2) that the 
first commutator type cannot produce a term U," (gg), whereas such a term arising from 
the second-type commutator is exactly cancelled by the similar term arising from the 
third-type commutator. This follows from the property that in the generator basis 
(3.1) the operators u,k(gl) and vt(1g) always appear with the same coefficient. The 
same reasoning applies to operators u,k(ll) with k even and 0 s k s 16 and to operator 
combinations u,k(gl)+v,k(lg) with k even and 4 s  k s 12, all of which could be found 
as constituents of an operator Gkq with k even. 

Let us now return to the fact that G3, is missing in the F4 algebra (3.1). A possible 
constituent of G3, is U: (gg), for which we investigate how it could be generated from 
commutators of F4 generators. Again the only types of commutators which can 

tators [U,": (gg), u,k:(gg)l, [U,k:(gl), v,k:(k)l and [u,k:(lg), ~,k:(gl)l where k l ,  k2 equal 1,5, 
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produce v i  (gg) are the three mentioned above. Since now kl + k2 + 3 is odd, the first 
type indeed generates a vi(gg) term as can be verified from (2.2). The second and 
third types also both generate that operator with the same coefficient and hence the 
two contributions add instead of cancelling each other as before. As a consequence, 
for each valid set of kl and k2 values a relation between two differept 6j symbols in 
general follows. There is, however, one exception, namely when kl = k2 = 11. Indeed, 
since v:'(gg) does not appear in Gllq,  because it does not even exist on account of 
coupling restrictions, only the equal contributions coming from the second- and 
third-type commutators survive. These contributions are proportional to the 6j  
coefficient 

I 4  11 11 4 31 8 

which necessarily has to vanish. The coefficient is not zero by triangle condition 
violation and is, therefore, our first new example of a group-theoretical explanation 
of a structural zero. However, vi(gg) is the only constituent of G,, which leads to 
such an explanation. For instance, in order to investigate vi(11) it suffices to replace 
in the entire reasoning g by 1 and vice versa. In general, relations between two 6 j  
symbols follow. The only exception is now kl = kZ = 1 wherefore vi(g1) and ui(lg) 
are non-existent, but the related 6j  symbol is trivially zero. 

The next case to be considered is that of Gs,. We shall not repeat here an analogous 
argumentation, but leave it to the reader to verify that again one structural zero can 
be explained, namely 

('8' l 1  9]=0.  
4 8  

The entries of the symbol indicate 
impossibility to generate an operator 
Finally, the missing of GI3, and G15, 
zero. 

that the explanation should be sought in the 
u:(gl) or u:(lg) in the commutator [G11,, GII,,]. 
in (3.1) is not associated with any new structural 

Summarising, it has been proven that the realisation (3.1) provides a basis for the 
explanation of two non-trivial zeros of the 6j  coefficient. In fact, it should be noted 
that even more of those listed in the tables of Biedenharn and Louck (1981b) can be 
explained. Indeed, on account of Regge symmetries (see, e.g., Biedenharn and Louck 
1981a) we immediately obtain 

1 1 1  11 31 - - [ y  10 
1 4  4 8 5 9  

1 1  9 1 3 ~  12 11 81 - - { l l  10 IO] - - (13 9 91 
4 8  8 7  4 9 7  6 8 6  

= 0. 
13 10 81 - ( y  10 91 - 

= 1 6  7 7 9 6  

(4.1) 

(4.2) 

For the sake of completeness, let us note that attention is rarely drawn to the fact 
that the well known structural zero related to G2 c SO, also entails another one, namely 

5 5 3  5 4 4  
3 3 3  3 4 2  

{ ] = {  ]=o .  (4.3) 



1382 J V a n  der Jeugt, G Vanden Berghe and H E  D e  Meyer 

As a conclusion we can say that we have succeeded in explaining eight new non-trivial 
zeros in the same way as the two mentioned in (4.3) which have been known for a 
long time. 

5. Discussion and outlook 

The foregoing analysis shows that we can expect to explain more non-trivial zeros if 
two conditions can be satisfied in the construction of a SO3 tensor operator basis for 
the generators of a classical Lie algebra. The first is that some tensor operators should 
be missing exactly in the way we missed Gi and GZ in the two-boson realisation here. 
A quick search through the tables of McKay and Patera (1981) shows that this is 
most likely to happen for the exceptional algebras. A second condition is that at least 
one tensor operator which is absent in the generator algebra appears only in the 
right-hand side of one commutator of operators which arise in the algebra as generator 
constituents (more commutators can be accepted if symmetry arguments apply). It is 
clear that in Qrder to achieve that aim, the number of different bosons (or, more 
generally, different SO3 representation labels) should be kept minimal and certainly 
degeneracies of 1 multiplicity should be avoided. Hence, we want not only to reduce 
into SO3 representations the first acceptable lowest dimensional representation of the 
algebra under consideration but, moreover, we prefer to select a maximal SO3 
subalgebra if it exists, and if choice remains we give preference to the principal SO3 
subalgebra (Dynkin 1957a, b). Otherwise, we must indicate a chain ending with an 
SO3 such that the second condition is maximally satisfied. 

Both conditions at first sight seem rather hard to satisfy. Nevertheless, we can 
predict that in the chains Eg 3 Fq 3 SO3 and E, 3 SO3 new zeros can be explained. 
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